The mean square of the divisor function

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent Progress on the Dirichlet Divisor Problem and the Mean Square of the Riemann Zeta-function

Let ∆(x) and E(t) denote respectively the remainder terms in the Dirichlet divisor problem and the mean square formula for the Riemann zeta-function on the critical line. This article is a survey of recent developments on the research of these famous error terms in number theory. These include upper bounds, Ω-results, sign changes, moments and distribution, etc. A few open problems will also be...

متن کامل

On the Mean Square of the Zeta-function and the Divisor Problem

Let ∆(x) denote the error term in the Dirichlet divisor problem, and E(T ) the error term in the asymptotic formula for the mean square of |ζ( 1 2 + it)|. If E∗(t) = E(t) − 2π∆∗(t/2π) with ∆∗(x) = −∆(x) + 2∆(2x) − 1 2 ∆(4x), then we obtain the asymptotic formula ∫ T 0 (E(t)) dt = T P3(logT ) +Oε(T ), where P3 is a polynomial of degree three in log T with positive leading coefficient. The expone...

متن کامل

On the Mean Square of the Riemann Zeta Function and the Divisor Problem

Let ∆(T ) and E(T ) be the error terms in the classical Dirichlet divisor problem and in the asymptotic formula for the mean square of the Riemann zeta function in the critical strip, respectively. We show that ∆(T ) and E(T ) are asymptotic integral transforms of each other. We then use this integral representation of ∆(T ) to give a new proof of a result of M. Jutila.

متن کامل

On the mean square of the divisor function in short intervals

We provide upper bounds for the mean square integral

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2014

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa164-2-7